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Abstract 

Background Given the complex and progressive nature of mild cognitive impairment (MCI), the ability to deline-
ate and understand the heterogeneous cognitive trajectories is crucial for developing personalized medicine and 
informing trial design. The primary goals of this study were to examine whether different cognitive trajectories can be 
identified within subjects with MCI and, if present, to characterize each trajectory in relation to changes in all major 
Alzheimer’s disease (AD) biomarkers over time.

Methods Individuals with a diagnosis of MCI at the first visit and ≥ 1 follow-up cognitive assessment were selected 
from the Alzheimer’s Disease Neuroimaging Initiative database (n = 936; age 73 ± 8; 40% female; 16 ± 3 years of 
education; 50% APOE4 carriers). Based on the Alzheimer’s Disease Assessment Scale-Cognitive Subscale-13 (ADAS-
Cog-13) total scores from baseline up to 5 years follow-up, a non-parametric k-means longitudinal clustering method 
was performed to obtain clusters of individuals with similar patterns of cognitive decline. We further conducted a 
series of linear mixed-effects models to study the associations of cluster membership with longitudinal changes in 
other cognitive measures, neurodegeneration, and in vivo AD pathologies.

Results Four distinct cognitive trajectories emerged. Cluster 1 consisted of 255 individuals (27%) with a nearly 
non-existent rate of change in the ADAS-Cog-13 over 5 years of follow-up and a healthy-looking biomarker profile. 
Individuals in the cluster 2 (n = 336, 35%) and 3 (n = 240, 26%) groups showed relatively mild and moderate cogni-
tive decline trajectories, respectively. Cluster 4, comprising about 11% of our study sample (n = 105), exhibited an 
aggressive cognitive decline trajectory and was characterized by a pronouncedly abnormal biomarker profile.

Conclusions Individuals with MCI show substantial heterogeneity in cognitive decline. Our findings may potentially 
contribute to improved trial design and patient stratification.
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Background
Mild cognitive impairment (MCI) is often thought of 
as a transitional stage between normal cognitive aging 
and dementia, including Alzheimer’s disease (AD) [1, 
2]. However, MCI is linked to substantial biological het-
erogeneity [3, 4]. Although the annual rate of conver-
sion from MCI to AD is set at approximately 10–12% 
[5–7], not all who have a diagnosis of MCI demonstrate 
progressive decline, and many exhibit differential clini-
cal outcomes, including remaining at the MCI level or 
reverting to cognitively normal (CN) state [8, 9]. In spite 
of its ubiquity, the heterogeneity of MCI regarding cogni-
tive trajectories and progression to AD is currently not 
well understood, hindering further progress in clinical 
practice and research.

To date, there are no effective therapies for the dis-
ease, and most clinical trials, aimed to slow down or 
halt the conversion from MCI to dementia, have so far 
failed [10]. One possible reason for widespread failures 
of therapeutic development for the disease may be due to 
neglecting the heterogeneous nature of MCI and treating 
all individuals as if they were the same. In line with this 
notion, a recent simulation study has shown that indi-
viduals with early AD demonstrated substantially vary-
ing rates of cognitive decline, even when randomization 
procedures were applied at the start of the study [11]. For 
instance, one potential way to facilitate the development 
of effective therapies is to identify and remove subgroups 
of MCI individuals who have relatively normal cognitive 
performance and a low rate of progression to AD [12]. 
The authors suggest that the inclusion of subjects with 
“disease-free” MCI may attenuate the potential beneficial 
effects of treatment.

Several previous studies have utilized subtyping 
approaches to sort out the heterogeneity of MCI in a 
non-biased manner [4, 13–19]. With regard to delineat-
ing cognitive subtypes, several investigators have utilized 
data-driven and specifically cluster-analytic approaches 
based on cross-sectional neuropsychological assessment 
data. Delano-Wood was one of the first to provide evi-
dence that distinct subgroups of MCI can be empirically 
derived based on cognitive data using a clinical sample of 
70 [20]. Subsequent studies applying empirical methods 
to neuropsychological test scores have identified multi-
ple MCI subgroups in clinic-based [21–28], community-
based [29, 30], and clinical trial [12] samples. However, 
given the progressive nature of cognitive aging or AD, 
considering the longitudinal progression and not just a 
snapshot of the current state may provide a more com-
prehensive picture of the prodrome stage of the disease. 
In Xie et al.’s [31] study, group-based trajectory modeling 
(GBTM) has been performed to identify 5 different lon-
gitudinal cognitive trajectories on the Mini-Mental State 

Examination (MMSE) score in subjects with MCI. In 
three other studies, by Lee et al. [32], Kim et al. [33], and 
Kim et  al. [34], the GBTM method was applied to dis-
cover cognitive trajectories according to Clinical Demen-
tia Rating Sum of Boxes (CDR-SB) in subjects with MCI. 
The first study by Lee et al. identified two cognitive trajec-
tories (fast decliners and slow decliners), while the other 
two investigations discovered three cognitive trajectories 
(stable, slow decliners, and faster decliners). Despite the 
prominent role of the Alzheimer’s Disease Assessment 
Scale-Cognitive Subscale 13 (ADAS-Cog-13) in evaluat-
ing the efficacy of antidementia medications [35], only 
one study has attempted to delineate the heterogeneity of 
cognitive trajectories of ADAS-Cog-13 among 238 par-
ticipants with amyloid-positive MCI [36]. The identified 
three clusters showed different cognitive trajectories over 
time. However, no studies have attempted to uncover 
MCI heterogeneity based on longitudinal ADAS-Cog-13 
scores in both amyloid-positive and amyloid-negative 
subjects. The inclusion of all MCI subjects regardless of 
amyloid status is clinically relevant, particularly in a clini-
cal trial targeting other pathobiological pathways other 
than the amyloid pathway. Additionally, further valida-
tion of identified cognitive trajectories using other neu-
ropsychological tests, neurodegeneration, in  vivo AD 
pathologies, and clinical progression may enhance the 
robustness of the resulting clusters.

Thus, by applying a data-driven, longitudinal cluster-
ing analysis approach, we investigated whether distinct 
cognitive trajectories could be derived within the Alz-
heimer’s Disease Neuroimaging Initiative (ADNI) MCI 
cohort and, if present, assessed the associations of trajec-
tory membership with longitudinal changes in all major 
AD biomarkers.

Methods
ADNI database
Data used in the present study were obtained from the 
ADNI database. The ADNI study was launched in 2003, 
and its primary goal has been to measure the clinical 
progression of MCI and early AD by utilizing numerous 
markers, such as clinical, neuropsychological, and imag-
ing assessments. Recruitment procedures for the ADNI 
cohort have been described at the following website: 
www. loni. usc. edu/ ADNI, and the ADNI eligibility crite-
ria can be found at the following website: www. adni- info. 
org/ Scien tists/ ADNIS tudyP roced ures. html.

Participants
Our study focuses on the 936 individuals diagnosed with 
amnestic MCI at baseline and at least one follow-up 
assessment (with ADAS-Cog-13 administration) in the 
next 5 years. These follow-up time points were included 

http://www.loni.usc.edu/ADNI
http://www.adni-info.org/Scientists/ADNIStudyProcedures.html
http://www.adni-info.org/Scientists/ADNIStudyProcedures.html
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regardless of the diagnostic status of the subject at these 
visits. Follow-up visits beyond 5 years after baseline were 
not included in the analyses. MCI diagnosis was assigned 
to an individual if he/she met the following criteria: 
memory complaint, memory impairment as verified 
by the Logical Memory II subscale (delayed paragraph 
recall) from the Wechsler Memory Scale-revised (WMS-
R), MMSE [37] score of between 24 to 30 (inclusive), 
CDR [38] score of 0.5, essentially preserved activities of 
daily living, and absence of AD or dementia. These ADNI 
MCI criteria are largely consistent with commonly used 
criteria in clinical trials, such as the Peterson criteria [6].

Each ADNI participant or authorized representative 
provided written informed consent and the institutional 
review board of each participating ADNI site approved 
the ADNI study. This project was also submitted for 
review to the institutional review board of Wenzhou Sev-
enth People’s Hospital. However, given that this study 
did not involve contact with human subjects and used 
de-identified data, the institutional review board of Wen-
zhou Seventh People’s Hospital determined this study did 
not require review.

Neuropsychological tests
ADNI participants underwent a comprehensive battery 
of neuropsychological assessments during visits. Four 
primary cognitive tests were selected in this analysis. 
We included the ADAS-Cog-13 [39], which examines 13 
aspects of cognitive function (range: 0–85, higher scores 
represent more severe cognitive impairment). MMSE, 
one of the most popular brief screening cognitive tests, 
was included as a measure of global cognition. The ADNI 
Memory composite score was derived from MMSE, logi-
cal memory, ADAS-Cog (3 versions), and Rey Auditory 
Verbal Learning Test (2 versions) [40]. The ADNI execu-
tive function composite score was developed from Clock 
Drawing, Digit Span Backwards, Category Fluency, Trails 
A and B, and Wechsler Adult Intelligence Scale-Revised 
Digit Symbol Substitution. Both the ADNI Memory and 
Executive function composite scores have been validated 
in previously published studies [41, 42].

Structural magnetic resonance imaging (MRI) measures
The procedure for MRI acquisition has been described 
previously [43]. Temporal lobe atrophy, particularly in 
the hippocampal formation and entorhinal cortex, has 
been considered to be the biological alteration most 
proximal to the onset of cognitive impairment [44]. Addi-
tionally, ventricular enlargement is thought to be a valid 
measure of clinical progression in individuals with MCI 
or AD [45]. In this study, we thus focus on these three 
structural MRI markers. To adjust sex differences in head 
size, three structural MRI markers were calculated using 
the following formulas:

PET imaging measures
The cerebral metabolic rate for glucose was determined 
by  [18F] fludeoxyglucose (FDG) positron emission 
tomography (PET). A standard procedure for image pre-
processing can be found at the following website: http:// 
adni. loni. usc. edu/ metho ds/ pet- analy sis/ pre- proce ssing/. 
Previous ADNI studies developed a “MetaROI” of the 
brain regions that demonstrate hypometabolic altera-
tions among subjects with MCI and AD [46, 47]. These 
brain regions included bilateral posterior cingulate, right 
and left angular gyri, and right and left inferior tempo-
ral gyri. Global Standardized uptake value ratios (SUVRs) 
were calculated by averaging FDG uptake across the 
MetaROI and dividing by the pons and cerebellum.

Brain amyloid deposition was examined by  [18F] flor-
betapir (AV45) PET as shown in http:// www. adni- info. 
org. The mean AV45 uptake was determined within 
four regions, including frontal, lateral parietal, anterior/
posterior cingulate, and lateral temporal regions. Global 
SUVRs were calculated by averaging across four brain 
regions and dividing by the whole cerebellum.

Genetic/CSF‑based biomarkers
APOE (gene map locus 19Q13.2) genotypes of the study 
participants were extracted from the ADNI database. 
Participants with no APOE4 genotype were classified as 
APOE4 non-carriers while participants with at least one 
APOE4 genotype were categorized as APOE4 carriers. 
The levels of CSF Aβ42, total-tau (t-tau), and phospho-
rylated-tau at threonine 181 (p-tau) were determined by 

Adjusted hippocampal volume (aHV ) = hippocampal/intracranial volume × 10
3

Adjusted entorhinal cortex volume (aEV ) = entorhinal cortex/intracranial volume × 10
3

Adjusted ventricular volume (aVV ) = ventricular/intracranial volume × 10
3

http://adni.loni.usc.edu/methods/pet-analysis/pre-processing/
http://adni.loni.usc.edu/methods/pet-analysis/pre-processing/
http://www.adni-info.org
http://www.adni-info.org
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the Department of Pathology & Laboratory Medicine 
and Center for Neurodegenerative Disease Research, 
Perelman School of Medicine, University of Pennsylva-
nia. The multiple xMAP Luminex platform and Innoge-
netics INNO-BIA AlzBio3 immunoassay reagents were 
used [48].

Clustering of longitudinal trajectories of cognitive 
performance
Given that ADAS-Cog is the gold standard for evaluat-
ing the efficacy of antidementia medications [49], ADAS-
Cog-13 (a modified version of ADAS-Cog that includes 
more cognitive tasks than the original one and is thought 

to be more sensitive to cognitive impairment at the ear-
liest stages of dementia) was used as our primary cog-
nitive outcome. Only participants with at least one 
follow-up assessment of ADAS-Cog-13 were included in 
this analysis. To identify distinct longitudinal cognitive 
profiles, a non-parametric k-means longitudinal clus-
tering method in the R package “kml” [50] was applied 
to detect trajectories of cognitive decline over a 5-year 
follow-up period. Before the clustering analysis, missing 
values were imputed by the “Copy Mean” method [50]. 
Briefly, the basic idea of this method is to impute miss-
ing values either using linear interpolation or last occur-
rence carried forward (LOCF) and then add a variation 
to make the individual trajectory similar to the “shape” of 
the overall sample’s average trajectory. We built the mod-
els for 1 to 8 clusters and selected the 4-cluster solution 
based on the Bayesian information criterion (BIC) [51] 
and the elbow method. A visual representation of the 
elbow method was created (see Additional file 1: Fig. S1). 
The raw individual trajectories and resultant 4-cluster 
trajectories are demonstrated in Fig. 1.

Statistical analyses
At baseline, we used the R statistical software v4.1.2 [52] 
to explore the relationships between cluster membership 
and demographics, APOE4 status, neuropsychological 
evaluations, structural MRI assessments, PET imag-
ing markers, and CSF AD pathologies. The differences 
between clusters were assessed with analysis of variance 
(ANOVA) for continuous variables and Pearson’s x2 tests 
for categorical variables. When group differences were 
detected with ANOVA or Pearson’s x2 tests, we used 
pairwise t-tests or x2 tests in post hoc analyses and cor-
rected for multiple testing using the false discovery rate 
(FDR) correction [53]. Group comparisons were also 
demonstrated visually as shown in Fig. 2.

Linear mixed-effects models were used to examine the 
associations of cluster membership with the longitudi-
nal change in cognition, structural MRI markers, PET 
imaging markers, and CSF AD biomarkers over up to 5 
years from baseline. Eleven models were created for the 
following dependent variables: MMSE, memory com-
posite score, executive function composite score, aHV, 
aEV, aVV, FDG SUVRs, AV45 SUVRs, CSF Aβ42, t-tau, 
and p-tau. Time since baseline (years), clusters, and their 
interaction were included as fixed effects. Age, gender, 
years of education, APOE4 status, and their interac-
tions with time were included as covariates. All models 
included a random intercept for each participant. The 
model equations are as follows:

where Ychange is the change in each dependent variable 
from the baseline.

Additionally, to further understand the slope differ-
ences of these four cluster groups, pairwise comparisons 
between clusters using the estimated marginal means 
(EMMs) were performed and the FDR method was used 
to correct for multiple testing.

Kaplan-Meier curves were conducted to demonstrate 
the rate of conversion to dementia in the four clusters, 
and pairwise comparisons using log-rank tests were per-
formed to compare survival curves. Follow-up duration 
was the number of years from baseline to dementia diag-
nosis at their last visit. During their follow-up period, 
subjects who did not convert to dementia were censored 
at their last visit.

Results
Findings of longitudinal k‑means cluster analysis
As illustrated in Fig. 1, MCI subjects were assigned into 
the following clusters according to their cognitive trajec-
tories: (1) cluster 1 with stable cognitive performance (we 
called this cluster “stable MCI,” n = 255, 27%), (2) cluster 
2 with a mild cognitive decline (we called it “mild declin-
ers,” n = 336, 35%), (3) cluster 3 with a moderate cogni-
tive decline (we called it “moderate decliners,” n = 240, 
26%), and (4) cluster 4 with a steep cognitive decline (we 
called it “aggressive decliners,” n = 105, 11%).

Baseline cluster characteristics
Table 1 shows the demographic and clinical characteris-
tics by cluster. For age, the participants in the mild, mod-
erate, and aggressive decliners groups were older than 
those in the stable MCI group, while no other pairwise 
difference was found. For education, the participants in 
the mild, moderate, and aggressive decliners groups were 
less educated than those in the stable MCI group, while 

Ychange ∼ Clusters∗time + Age∗time + Gender∗time + Education∗time + APOE4 status∗time
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no other pairwise difference was significant. For gender, 
the mild decliners group had a lower female proportion 
than the stable MCI group, while no other pairwise dif-
ference was observed. For APOE4 status, the partici-
pants in the moderate decliners and aggressive decliners 
groups had a higher proportion of APOE4 carriers than 
those in the stable MCI and mild decliners groups, while 
no other pairwise difference was found. For follow-up 

duration, the stable MCI group had a longer follow-up 
duration than all other groups, and the aggressive declin-
ers group had a shorter follow-up duration than the mild 
decliners and moderate decliners groups. Regarding neu-
ropsychological performance, all cognitive tests (MMSE, 
ADAS-Cog-13, memory composite score, and executive 
function composite score) showed significant differences 
between clusters. Regarding structural MRI assessments, 

Fig. 1 Cognitive trajectories based on ADAS-Cog-13 from baseline to 5 years. Overall, 936 participants with MCI were included in this analysis, 
including those with at least 2 data points of ADAS-Cog-13 over a 5-year follow-up period. Four cognitive trajectories were identified by the 
longitudinal K-means cluster analysis. The solid blue, long-dash green, dash orange, and dot-dash red lines represent clusters 1, 2, 3, and 
4, respectively. The thin gray lines represent individual cognitive trajectories. Abbreviation: ADAS-Cog-13, Alzheimer’s Disease Assessment 
Scale-Cognitive Subscale 13

Fig. 2 Baseline characteristics by cluster. Differences between clusters were assessed with ANOVA. When group differences were detected 
with ANOVA, we used pairwise t-tests in post hoc analyses and corrected for multiple testing using the FDR correction. Abbreviations: MCI, 
mild cognitive impairment; MMSE, Mini-Mental State Examination; ADAS-Cog-13, Alzheimer’s Disease Assessment Scale-Cognitive Subscale 13; 
aVV, adjusted ventricular volume; aEV, adjusted entorhinal cortex volume; aHV, adjusted hippocampal volume; FDG, fludeoxyglucose; SUVRs, 
standardized uptake value ratios; Aß42, ß-amyloid; t-tau, total tau; p-tau, phosphorylated tau

(See figure on next page.)



Page 6 of 16Wang et al. Alzheimer’s Research & Therapy           (2023) 15:57 

Fig. 2 (See legend on previous page.)
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four groups showed significant differences, with the 
exception of equivalent levels between the mild declin-
ers and moderate decliners groups on aVV. For brain 
glucose metabolism, the moderate decliners and aggres-
sive decliners groups did not differ in FDG SUVRs, while 
all other pairwise differences were significant. For both 
brain amyloid PET and CSF Aβ42, all pairwise differences 
were significant, with the exception of comparable levels 
between the moderate decliners and aggressive decliners 
groups. Regarding CSF tau pathologies, all pairwise dif-
ferences were significant, with the exception of compara-
ble levels between the moderate decliners and aggressive 

decliners groups on CSF p-tau. Figure  2 showing group 
differences is also created for visual inspection.

Cluster membership and longitudinal changes
The results from the linear mixed-effects models exam-
ining the associations between cluster membership and 
longitudinal changes in cognition, neurodegeneration, 
and CSF AD pathologies are displayed in Table  2 and 
Figs. 3 and 4.

For the models involving cognitive assessments (MMSE, 
the ADNI memory composite score, and the ADNI exec-
utive function composite score; see Table  2, Figs.  3A–C 

Table 1 Cluster characteristics at baseline

Notes: Continuous variables are summarized as mean (standard deviation), and categorical variables are summarized as n (%). Differences between the clusters were 
assessed with ANOVA for continuous variables and Pearson’s x2 tests for categorical variables. When group differences were detected with ANOVA or Pearson’s x2 tests, 
we used pairwise t-tests or x2 tests in post hoc analyses and corrected for multiple testing using the FDR correction

Abbreviations: MCI mild cognitive impairment, APOE apolipoprotein E, MMSE Mini-Mental State Examination, ADAS-Cog-13 Alzheimer’s Disease Assessment Scale-
Cognitive Subscale 13, aVV adjusted ventricular volume, aEV adjusted entorhinal cortex volume, aHV adjusted hippocampal volume, FDG fludeoxyglucose, SUVRs 
standardized uptake value ratios, Aß42 ß-amyloid, t-tau total tau, p-tau phosphorylated tau
a p < 0.05 compared with stable MCI
b p < 0.05 compared with mild decliners
c p < 0.05 compared with moderate decliners
d Number of participants for executive function analysis: stable MCI: n = 255; mild decliners: n = 335; moderate decliners: n = 240; aggressive decliners: n = 104
e Number of participants for aVV analysis: stable MCI: n = 245; mild decliners: n = 321; moderate decliners: n = 224; aggressive decliners: n = 100
f Number of participants for aEV analysis: stable MCI: n = 224; mild decliners: n = 281; moderate decliners: n = 190; aggressive decliners: n = 90
g Number of participants for aHV analysis: stable MCI: n = 228; mild decliners: n = 282; moderate decliners: n = 191; aggressive decliners: n = 89
h Number of participants for FDG PET analysis: stable MCI: n = 237; mild decliners: n = 262; moderate decliners: n = 174; aggressive decliners: n = 59
i Number of participants for AV45 PET analysis: stable MCI: n = 182; mild decliners: n = 179; moderate decliners: n = 83; aggressive decliners: n = 41
j Number of participants for CSF Aβ42 analysis: stable MCI: n = 177; mild decliners: n = 213; moderate decliners: n = 152; aggressive decliners: n = 63
k Number of participants for CSF t-tau analysis: stable MCI: n = 176; mild decliners: n = 208; moderate decliners: n = 150; aggressive decliners: n = 62
l Number of participants for CSF p-tau analysis: stable MCI: n = 177; mild decliners: n = 213; moderate decliners: n = 152; aggressive decliners: n = 63

Characteristic Stable MCI (cluster 
1), N = 255

Mild decliners 
(cluster 2), N = 336

Moderate decliners 
(cluster 3), N = 240

Aggressive decliners 
(cluster 4), N = 105

p value

Age, years 70 (7) 74 (8)a 74 (7)a 74 (7)a < 0.001

Education, years 17 (2) 16 (3)a 16 (3)a 15 (3)a < 0.001

Gender, n (%) 0.020

 Male 136 (53%) 221 (66%) 140 (58%) 60 (57%)

 Female 119 (47%) 115 (34%)a 100 (42%) 45 (43%)

APOE4 carriers 93 (36%) 147 (44%) 161 (67%)a, b 69 (66%)a, b < 0.001

Follow-up duration, years 3.54 (1.39) 3.29 (1.48)a 3.07 (1.40)a 2.32 (1.36)a, b, c < 0.001

MMSE 29 (1) 28 (2)a 27 (2)a, b 26 (2)a, b, c < 0.001

ADAS-Cog-13 10 (3) 15 (4)a 21 (4)a, b 26 (5)a, b, c < 0.001

Memory composite score 0.88 (0.50) 0.22 (0.40)a − 0.30 (0.40)a, b − 0.64 (0.40)a, b, c < 0.001

Executive function composite  scored 0.75 (0.76) 0.32 (0.77)a − 0.11 (0.75)a, b − 0.73 (0.73)a, b, c < 0.001

aVVe 21 (11) 27 (13)a 27 (12)a 33 (14)a, b, c < 0.001

aEVf 2.62 (0.41) 2.35 (0.51)a 2.10 (0.43)a, b 1.98 (0.47)a, b, c < 0.001

aHVg 5.03 (0.67) 4.48 (0.77)a 4.10 (0.68)a, b 3.87 (0.60)a, b, c < 0.001

Brain FDG  SUVRsh 1.29 (0.06) 1.27 (0.06)a 1.21 (0.08)a, b 1.20 (0.08)a, b < 0.001

Brain amyloid  SUVRsi 1.10 (0.16) 1.23 (0.22)a 1.36 (0.25)a, b 1.43 (0.20)a, b < 0.001

CSF Aβ42j, pg/ml 200 (46) 176 (54)a 140 (39)a, b 139 (31)a, b < 0.001

CSF t-tauk, pg/ml 64 (31) 85 (49)a 114 (55)a, b 129 (64)a, b, c < 0.001

CSF p-taul, pg/ml 30 (16) 39 (24)a 48 (23)a, b 52 (25)a, b < 0.001
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and 4A–C), the clusters (mild decliners, moderate declin-
ers, and aggressive decliners) × time interactions were all 
significant such that the mild decliners, moderate declin-
ers, and aggressive decliners groups had steeper slopes 
(i.e., faster cognitive decline) compared to the stable MCI 
group. To further understand the group differences in 
slope, post hoc analyses using the FDR correction were 
performed. The group differences in slope were significant 
in all pairwise comparisons (all FDR-adjusted p < 0.0001).

For the aVV model (see Table 2, Figs. 3D and 4D), the 
clusters × time interactions were all significant such that 

the mild decliners, moderate decliners, and aggressive 
decliners groups had steeper slopes on aVV (i.e., faster 
ventricular enlargement) compared to the stable MCI 
group. To further understand the group differences in 
slope, post hoc analyses using the FDR correction were 
performed. The group differences in slope were significant 
in all pairwise comparisons (all FDR-adjusted p < 0.0001).

For the aEV and aHV models (see Table 2, Figs. 3E, F 
and 4E, F), the clusters × time interactions were all sig-
nificant such that the mild decliners, moderate declin-
ers, and aggressive decliners groups had steeper slopes 

Table 2 Summary of linear mixed-effects models

Notes: The main effects of predictors (i.e., age, gender, years of education, APOE4 status, cluster membership, and years since baseline) are included in all models, 
while coefficients are not shown for the sake of brevity. Coefficients are unstandardized values, which represent the magnitude of change in each AD biomarker yearly

Abbreviations: MMSE Mini-Mental State Examination, aVV adjusted ventricular volume, aEV adjusted entorhinal cortex volume, aHV adjusted hippocampal volume, 
FDG fludeoxyglucose, SUVRs standardized uptake value ratios, AV45 florbetapir, Aß42 ß-amyloid, t-tau total tau, p-tau phosphorylated tau

MMSE Memory composite score Executive function composite score
Predictors Coefficients SE p value Coefficients SE p value Coefficients SE p value
Age × time 0.0011 0.0027 0.6819 -0.0020 0.0005 < 0.0001 -0.0001 0.0007 0.9233

Female gender × time -0.0025 0.0386 0.5208 -0.0180 0.0067 0.0075 -0.0142 0.0100 0.1554

Education × time -0.0074 0.0068 0.2791 -0.0029 0.0012 0.0131 -0.0065 0.0018 0.0003

APOE4 carriers × time -0.1399 0.0389 0.0003 -0.0297 0.0068 < 0.0001 -0.0130 0.0100 0.1959

Mild decliners × time -0.3193 0.0465 < 0.0001 -0.0865 0.0081 < 0.0001 -0.1084 0.0120 < 0.0001

Moderate decliners × time -1.2590 0.0536 < 0.0001 -0.2103 0.0093 < 0.0001 -0.2905 0.0138 < 0.0001

Aggressive decliners × time -3.1750 0.0832 < 0.0001 -0.3877 0.0145 < 0.0001 -0.4563 0.0228 < 0.0001

aVV aEV aHV
Predictors Coefficients SE p value Coefficients SE p value Coefficients SE p value
Age × time 0.0104 0.0033 0.0017 -0.0015 0.0004 0.0006 -0.0013 0.0003 < 0.0001

Female gender × time -0.0698 0.0476 0.1430 -0.0049 0.0060 0.4102 -0.0228 0.0041 < 0.0001

Education × time 0.0214 0.0082 0.0093 -0.0022 0.0010 0.0319 -0.0007 0.0007 0.3294

APOE4 carriers × time 0.3513 0.0468 < 0.0001 -0.0216 0.0058 0.0002 -0.0248 0.0040 < 0.0001

Mild decliners × time 0.5588 0.0569 < 0.0001 -0.0260 0.0070 0.0002 -0.0301 0.0049 < 0.0001

Moderate decliners × time 1.2790 0.0637 < 0.0001 -0.0759 0.0081 < 0.0001 -0.0859 0.0057 < 0.0001

Aggressive decliners × time 2.7090 0.1011 < 0.0001 -0.0704 0.0122 < 0.0001 -0.0977 0.0086 < 0.0001

FDG SUVRs AV45 SUVRs CSF Aβ42
Predictors Coefficients SE p value Coefficients SE p value Coefficients SE p value
Age × time 0.0001 0.0001 0.3708 -0.0000 0.0002 0.9945 -0.0833 0.0579 0.151

Female gender × time -0.0019 0.0014 0.1760 0.0013 0.0026 0.6208 -0.2765 0.8175 0.735

Education × time -0.0003 0.0002 0.1579 0.0009 0.0005 0.0748 -0.0749 0.1469 0.610

APOE4 carriers × time -0.0030 0.0014 0.0297 0.0104 0.0027 0.0001 1.1217 0.8007 0.162

Mild decliners × time -0.0068 0.0018 0.0001 0.0029 0.0030 0.3265 0.3555 1.0177 0.727

Moderate decliners × time -0.0178 0.0018 < 0.0001 -0.0061 0.0041 0.1342 -0.0674 1.0562 0.949

Aggressive decliners × time -0.0199 0.0030 < 0.0001 -0.0133 0.0063 0.0351 -0.0975 1.6161 0.952

CSF t‑tau CSF p‑tau \

Predictors Coefficients SE p value Coefficients SE p value \ \ \

Age × time -0.0441 0.0754 0.5593 -0.0794 0.0584 0.1746 \ \ \

Female gender × time 1.0084 1.0639 0.3437 -0.2223 0.8223 0.7870 \ \ \

Education × time 0.4866 0.1919 0.0115 0.0218 0.1480 0.8831 \ \ \

APOE4 carriers × time -1.0515 1.0448 0.3147 -0.7189 0.8105 0.3755 \ \ \

Mild decliners × time 1.0575 1.3234 0.4246 -0.5903 1.0249 0.5649 \ \ \

Moderate decliners × time 2.6670 1.3778 0.0535 -0.5745 1.0674 0.5906 \ \ \

Aggressive decliners × time 4.3979 2.1002 0.0367 0.6619 1.6368 0.6861 \ \ \
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(i.e., faster entorhinal atrophy and faster hippocampal 
atrophy) compared to the stable MCI group. To fur-
ther understand the group differences in slope, post 
hoc analyses using the FDR correction were performed. 
All pairwise differences in slope were significant, with 

the exception of comparable levels between the mod-
erate decliners and aggressive decliners groups on 
entorhinal atrophy (coefficient: − 0.00551, SE: 0.01223, 
FDR-adjusted p: 0.6526) and on hippocampal atrophy 
(coefficient: 0.0117, SE: 0.0087, FDR-adjusted p: 0.1798).

Fig. 3 Forest plots showing the effect difference relative to stable MCI. Circles represent coefficients (as shown in Table 2), and horizontal dark 
lines represent the 95% confidence intervals. Abbreviations: MMSE, Mini-Mental State Examination; aVV, adjusted ventricular volume; aEV, adjusted 
entorhinal cortex volume; aHV, adjusted hippocampal volume; FDG, fludeoxyglucose; SUVRs, standardized uptake value ratios; Aß42, ß-amyloid; 
t-tau, total tau; p-tau, phosphorylated tau

Fig. 4 Cluster membership and longitudinal changes in all major AD biomarkers over a 5-year follow-up. Intercepts and slopes of the four clusters 
come from linear mixed-effects models. There were significant differences between all four clusters in the amount of change in MMSE, memory, 
executive function, and aVV (A–D). All pairwise differences in the rates of decline in aEV, aHV, and FDG-PET were significant, with the exception of 
comparable levels between the cluster 3 and 4 groups (E–G). However, four clusters exhibited similar rates of change in Aβ-PET, CSF Aβ42, t-tau, 
and p-tau proteins (H–K). Abbreviations: MMSE, Mini-Mental State Examination; aVV, adjusted ventricular volume; aEV, adjusted entorhinal cortex 
volume; aHV, adjusted hippocampal volume; FDG, fludeoxyglucose; SUVRs, standardized uptake value ratios; Aß42, ß-amyloid; t-tau, total tau; p-tau, 
phosphorylated tau

(See figure on next page.)



Page 10 of 16Wang et al. Alzheimer’s Research & Therapy           (2023) 15:57 

Fig. 4 (See legend on previous page.)
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For the FDG SUVRs model (see Table 2, Figs. 3G and 
4G), the clusters × time interactions were all significant 
such that the mild decliners, moderate decliners, and 
aggressive decliners groups had steeper slopes on FDG 
SUVRs (i.e., faster decline in brain glucose metabolism) 
compared to the stable MCI group. To further under-
stand the group differences in slope, post hoc analyses 
using the FDR correction were performed. All pairwise 
differences in slope were significant, with the exception 
of comparable levels between the moderate decliners 
and aggressive decliners groups on FDG SUVRs (coeffi-
cient: 0.0020, SE: 0.0030, FDR-adjusted p: 0.4963).

For the AV45 SUVRs model (see Table  2, Figs.  3H 
and 4H), the aggressive decliners × time term, but not 
the mild decliners × time or moderate decliners × time 
term, was significant, indicating that the aggressive 
decliners group rather than the mild decliners or mod-
erate decliners group differed in slopes on AV45 SUVRs  
compared to the stable MCI group. When corrected by 
the FDR method, however, post hoc analyses did not 
find any pairwise differences in slopes (all FDR-adjusted  
p > 0.05).

For the CSF Aß42 model (see Table 2, Figs. 3I and 4I), 
the clusters × time interactions were not significant, 
suggesting that the mild decliners, moderate decliners, 
and aggressive decliners groups did not differ in slopes 
on CSF Aß42 compared to the stable MCI group. Fur-
thermore, post hoc analyses also did not find any pair-
wise differences in slopes (all FDR-adjusted p > 0.05).

For the CSF t-tau model (see Table 2, Figs. 3J and 4J), 
the aggressive decliners × time term, but not the mild 
decliners × time or moderate decliners × time term, was 
significant, indicating that the aggressive decliners group 
rather than the mild decliners or moderate decliners 
group had a steeper slope on CSF t-tau compared to the 
stable MCI group. When corrected by the FDR method, 
however, post hoc analyses did not find any pairwise dif-
ferences in slopes (all FDR-adjusted p > 0.05).

For the CSF p-tau model (see Table 2, Figs. 3K and 4K), 
the clusters × time interactions were not significant, sug-
gesting that the mild decliners, moderate decliners, and 
aggressive decliners   groups did not differ in slopes on 
CSF p-tau compared to the stable MCI group. Further-
more, post hoc analyses also did not find any pairwise 
differences in slopes (all FDR-adjusted p > 0.05).

Progression to dementia
Of the 936 subjects, 307 (32.8%) progressed to dementia 
within a 5-year follow-up period. Kaplan-Meier curves 
showing the rate of conversion to dementia are demon-
strated in Fig.  5. A log-rank test found significant clus-
ter differences in survival curves (x2[3] = 462; p < 0.001). 
All pairwise comparisons with the FDR correction were 

significant (FDR-adjusted p < 0.001). Regarding the type of 
dementia, 294 of the 307 (95.8%) who converted to demen-
tia were diagnosed with AD dementia. Thirteen subjects 
(4.2%) progressed to a non-AD dementia (4 frontal tem-
poral dementia, 3 primary progressive aphasia, 1 progres-
sive supranuclear palsy, 1 vascular dementia, 1 Shy-Drager 
syndrome, 1 semantic dementia, 1 with Parkinson’s disease 
and Lewy body dementia features, 1 other CNS disorder).

Sensitivity analyses
The residual approach was used to obtain adjusted MRI 
volumes to examine whether our MRI results are robust 
to a different ICV adjustment approach [54]. Coefficients 
and the 95% confidence intervals of the three linear 
mixed-effects models were summarized (see Additional 
file 1: Fig. S2). Compared to the results of Fig. 3.D–F, the 
patterns of coefficients and the 95% confidence intervals 
of these three models remained unchanged.

Discussion
There were four key findings of the current study. First, 
there is substantial heterogeneity in disease progres-
sion among MCI subjects despite being intentionally 
recruited as an independent clinical entity often thought 
of as the prodromal stage of dementia [6]. Second, we 
identified a considerable portion of subjects with MCI 
(cluster 1) showing a very little cognitive decline over 5 
years of follow-up. This group of individuals exhibited 

Fig. 5 Kaplan-Meier survival curves showing the rate of progression 
to dementia in the four clusters. All clusters differed significantly from 
one another. Abbreviation: MCI, mild cognitive impairment
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a remarkably benign-looking biomarker profile. Third, 
individuals in the cluster 2 and 3 groups demonstrated 
relatively mild and moderate cognitive decline trajecto-
ries, respectively. Fourth, a subgroup of individuals with 
MCI (cluster 4) exhibited an aggressive cognitive decline 
trajectory and was characterized by a pronouncedly 
abnormal biomarker profile.

We found substantial differences between the four clus-
ters in clinical characteristics and longitudinal changes in 
major AD biomarkers, indicating that our data-driven 
clustering method categorized MCI subjects into biologi-
cally and clinically different subgroups. Cluster 1, com-
prising about 27% of our study sample, showed a nearly 
non-existent rate of change in the ADAS-Cog-13 over 
a 5-year follow-up period. This subgroup had remark-
ably better baseline performance on the ADAS-Cog-13, 
MMSE, memory composite, and executive function 
scores; a more healthy-looking biomarker profile; and a 
substantially slower change in clinical progression rela-
tive to the rest of the MCI group. In agreement with 
this finding, previously published studies conducted in 
a population-based sample [30] and the ADNI data set 
[55] also identified a very similar MCI subgroup, which 
had less impaired baseline performance on cognitive 
tasks and a substantially lower risk of clinical progression 
compared to other MCI groups. This subgroup is espe-
cially relevant in clinical trials because the inclusion of 
“disease-free” MCI subjects may minimize the potential 
to detect the beneficial effects of treatment for MCI [12]. 
Edmonds and colleagues suggest that the identification 
and removal of this subgroup could maximize the capa-
bility to observe the treatment effects of new therapeutics 
in clinical trials involving subjects with MCI [12]. Better 
stratification of MCI populations before recruitment in 
clinical trials may help increase the chances of observing 
efficacy and will contribute to the development of more 
efficient study designs.

Cluster 2, the largest MCI subgroup identified in this 
study (n = 336, 35%), initially performed worse (indi-
cated by a larger intercept in Fig.  1) on ADAS-Cog-13 
and exhibited slightly faster cognitive deterioration over 
time relative to cluster 1. Moreover, levels of AD-associ-
ated biomarkers differed significantly between the cluster 
1 and 2 subgroups (Fig.  2). Namely, at baseline, partici-
pants in cluster 2 had higher levels of CSF tau pathologies 
and lower levels of CSF Aβ42 compared to those in clus-
ter 1. These findings are in accordance with earlier lon-
gitudinal studies where they have shown that abnormal 
CSF biomarker profiles are predictive of conversion from 
MCI to AD with high accuracy [56, 57]. We also found 
more impaired cognitive performance, as evaluated with 
the MMSE, memory, and executive function composite 
scores, in the cluster 2 group, compared to the cluster 1 

group (Fig.  2). These two subgroups demonstrated pro-
nounced differences in Aβ-PET SUVRs, a biomarker 
of amyloid accumulation in the brain, and FDG-PET 
SUVRs, a marker of neurodegeneration and synaptic dys-
function [58]. Our findings are consistent with a previous 
PET imaging study, which suggests that Aβ deposition is 
a robust predictor of clinical progression from MCI to 
AD [59], with amyloid changes occurring long before the 
start of cognitive decline [60]. Likewise, the finding that 
cluster 1 had higher levels of FDG-PET SUVRs (repre-
senting less severe neurodegeneration) relative to cluster 
2 agrees with the observation that higher levels of FDG-
PET SUVRs are associated with remaining cognitively 
stable among individuals with MCI [61].

Clusters 3 (n = 240, 26%) and 4 (n = 105, 11%) exhib-
ited substantially steeper cognitive deterioration over 
time compared to clusters 1 and 2 (Fig. 1), with partici-
pants in the cluster 4 group showing the most aggressive 
cognitive decline trajectory. These findings may have a 
critical impact on potentiating clinical trials involv-
ing MCI subjects based on the predicted magnitude 
of change in cognition (e.g., ADAS-Cog-13) over time. 
For example, it is likely that future trials may attempt to 
enroll those subjects who would be predicted to fall into 
the cluster 4 group since the inclusion of these aggres-
sive cognitive decliners may enhance the probability 
of success in clinical trials and lead to a significant gain 
of power to observe treatment effects. However, this 
approach should be conducted with caution because 
cluster 4 is a relatively small group (n = 105, 11%). 
The inclusion of only those subjects in cluster 4 would 
likely hinder clinical trials, as participants in other sub-
groups (89%) would be excluded. Furthermore, future 
studies should focus on the development of statistical 
models predicting cluster membership using baseline 
demographics and clinical characteristics to facilitate the 
recruitment process for clinical trials.

The amyloid cascade hypothesis of AD postulates that 
the pathologic process initiates with amyloid deposition 
(as measured by CSF Aβ42 and Aβ-PET), followed by 
changes in CSF tau proteins, then changes in FDG-PET 
and structural MRI, followed by cognitive symptoms [44, 
62]. Our results largely support this conceptual model. 
Specifically, our linear mixed-effects models with four 
cognitive trajectories as the independent variable and 
all major AD biomarkers as dependent variables (Fig. 4) 
found that four distinct cognitive decline trajectories 
(i.e., different rates of cognitive decline) had comparable 
rates of changes in Aβ-PET, CSF Aβ42, and tau proteins 
(Fig. 4H–K) but exhibited significantly different rates of 
changes in structural MRI and FDG-PET (Fig.  4D–G) 
at the MCI stage of dementia, in accordance with the 
notion that cognitive decline is only loosely coupled with 
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changes in Aβ-PET and CSF Aβ42 [63, 64], but is tightly 
accompanied by changes in markers of neurodegenera-
tion [65–67] at the later stages of the disease (e.g., MCI 
and AD dementia). For instance, previous studies found 
that among patients who were experiencing a rapid cog-
nitive decline (e.g., AD patients), rates of MRI changes 
were correlated with cognitive deterioration, while rates 
of brain amyloid deposition were not [64, 68]. In addi-
tion, Vemuri and colleagues found that among subjects 
with MCI, correlations with cognitive measures were 
strong with MRI volumes but were not significant with 
levels of CSF tau [69]. As expected, participants with four 
distinct cognitive decline trajectories identified by the 
cluster technique based on longitudinal ADAS-Cog-13 
data also exhibited different rates of other cognitive out-
comes (i.e., MMSE, memory, and executive function; 
Fig. 4A–C), and all pairwise differences in rates of cogni-
tive decline were significant. Somewhat unexpectedly, we 
observed a significant difference between cluster 3 and 
cluster 4 in the rate of change in aVV (i.e., widening ven-
tricles; Fig. 4D), but not aEV, aHV, or FDG-PET (Fig. 4E–
G), despite that all of these imaging markers are thought 
of as neurodegenerative markers. This discrepancy may 
be attributed to the fact that relative to medial tempo-
ral atrophy (i.e., aEV and aHV) or hypometabolism on 
FDG-PET, the enlargement of ventricles is considered to 
be a more downstream event and more strongly coupled 
with a change in global cognition over time [70]. It is also 
likely that several factors that we did not examine in the 
present study, such as cognitive reserve, brain resilience, 
and other brain neuropathologies (e.g., vascular damages, 
Lewy bodies), may contribute to the difference in the rate 
of cognitive decline between clusters 3 and 4 [71, 72].

This study has several limitations. First, we observed 
highly variable individual trajectories on the ADAS-
Cog-13 among individuals with MCI (i.e., the thin gray 
lines in Fig. 1). In this study, the usage of cluster analysis 
should be interpreted as an exploratory analysis in nature, 
rather than a confirmative one. We acknowledge that a 
larger sample size of each subgroup, particularly the clus-
ter 4 group, would be warranted to yield more robust and 
generalizable findings. However, our linear mixed-effects 
models with cluster membership as the independent var-
iable and other cognitive outcomes (i.e., MMSE, memory, 
and executive function) produced a very consistent pat-
tern of cognitive trajectories (Fig.  4A–C), further sup-
porting the notion that the four trajectories identified in 
the cluster analysis were stable and robust. Second, we 
did not use or incorporate other AD biological biomark-
ers in the clustering process, since our primary study goal 
was to examine the heterogeneity in cognitive decline, 
and the ADAS-Cog-13 is the most predominant assess-
ment used to track disease progression in AD clinical 

trials [49]. Third, changes in AD biomarkers over long 
periods are non-linear [62] but were modeled as linear 
in our linear mixed-effects models. Nevertheless, over a 
shorter period, changes in AD biomarkers can be mod-
eled as linear functions since such non-linearity seems 
to be minimal [73]. Fourth, the ADNI memory compos-
ite score was derived from several memory assessments, 
such as memory tasks of ADAS-Cog. This may introduce 
some degree of circularity since the ADNI memory com-
posite score partly overlaps with the ADAS-Cog-13.

In conclusion, we identified four distinct cognitive 
decline trajectories of MCI and further characterized 
changes in all major AD biomarkers over time for each 
subgroup. Our findings highlight the importance of 
considering the heterogeneity of MCI when recruiting 
participants in clinical trials, thus potentially contribut-
ing to better trial design and more precise personalized 
medicine.

Supplementary Information
The online version contains supplementary material available athttps:// doi. 
org/ 10. 1186/ s13195- 023- 01205-w.

Additional file 1. 

Acknowledgements
Data collection and sharing for this project was funded by the Alzheimer’s 
Disease Neuroimaging Initiative (ADNI) (National Institutes of Health Grant 
U01 AG024904) and DOD ADNI (Department of Defense award number 
W81XWH-12-2-0012). ADNI is funded by the National Institute on Aging, the 
National Institute of Biomedical Imaging and Bioengineering, and through 
generous contributions from the following: AbbVie, Alzheimer’s Association; 
Alzheimer’s Drug Discovery Foundation; Araclon Biotech; BioClinica, Inc.; 
Biogen; Bristol-Myers Squibb Company; CereSpir, Inc.; Cogstate; Eisai Inc.; 
Elan Pharmaceuticals, Inc.; Eli Lilly and Company; EuroImmun; F. Hoffmann-La 
Roche Ltd. and its affiliated company Genentech, Inc.; Fujirebio; GE Healthcare; 
IXICO Ltd.; Janssen Alzheimer Immunotherapy Research & Development, LLC.; 
Johnson & Johnson Pharmaceutical Research & Development LLC.; Lumosity; 
Lundbeck; Merck & Co., Inc.; Meso Scale Diagnostics, LLC.; NeuroRx Research; 
Neurotrack Technologies; Novartis Pharmaceuticals Corporation; Pfizer Inc.; 
Piramal Imaging; Servier; Takeda Pharmaceutical Company; and Transition 
Therapeutics. The Canadian Institutes of Health Research is providing funds 
to support ADNI clinical sites in Canada. Private sector contributions are 
facilitated by the Foundation for the National Institutes of Health (www. fnih. 
org). The grantee organization is the Northern California Institute for Research 
and Education, and the study is coordinated by the Alzheimer’s Therapeutic 
Research Institute at the University of Southern California. ADNI data are dis-
seminated by the Laboratory for Neuro Imaging at the University of Southern 
California.
Data used in the preparation of this article were obtained from the Alzheimer’s 
Disease Neuroimaging Initiative (ADNI) database (adni.loni.usc.edu). As such, 
the investigators within the ADNI contributed to the design and implementa-
tion of ADNI and/or provided data but did not participate in the analysis or 
writing of this report. A complete listing of ADNI investigators can be found 
at http:// adni. loni. usc. edu/ wp- conte nt/ uploa ds/ how_ to_ apply/ ADNI_ Ackno 
wledg ement_ List. pdf.

Authors’ contributions
XWW, TY, and WJZ drafted the manuscript. WJZ and JZ supervised the study. 
WJZ and JZ performed the clustering analyses and statistical work. WJZ and 
JZ contributed to the data management and revision of the manuscript. All 
authors discussed the results and commented on the paper. The authors read 
and approved the final manuscript.

https://doi.org/10.1186/s13195-023-01205-w
https://doi.org/10.1186/s13195-023-01205-w
http://www.fnih.org
http://www.fnih.org
http://adni.loni.usc.edu/wp-content/uploads/how_to_apply/ADNI_Acknowledgement_List.pdf
http://adni.loni.usc.edu/wp-content/uploads/how_to_apply/ADNI_Acknowledgement_List.pdf


Page 14 of 16Wang et al. Alzheimer’s Research & Therapy           (2023) 15:57 

Funding
This study did not receive any grant from funding agencies in the public, com-
mercial, or not-for-profit sectors.

Availability of data and materials
Data used in the present study has been made publicly available by the ADNI 
in the Laboratory of Neuro Imaging (LONI) database.

Declarations

Ethics approval and consent to participate
Each ADNI participant or authorized representative provided written informed 
consent, and the institutional review board of each participating ADNI site 
approved the ADNI study. This study was conducted in accordance with 
the Declaration of Helsinki. This project was also submitted for review to the 
institutional review board of Wenzhou Seventh People’s Hospital. However, 
given that this study did not involve contact with human subjects and used 
de-identified data, the institutional review board of Wenzhou Seventh People’s 
Hospital determined this study did not require review.

Consent for publication
Not applicable.

Competing interests
Jie Zhang serves as the Founder of Hangzhou Shansier Medical Technologies 
Co., Ltd., and holds shares in Hangzhou Shansier Medical Technologies Co., 
Ltd., which is dedicated to digitizing clinical practice and research. Wenjun 
Zhou is employed by Hangzhou Shansier Medical Technologies Co., Ltd., and 
holds shares in Hangzhou Shansier Medical Technologies Co., Ltd. The other 
authors declare that they have no competing interests.

Author details
1 Department of Psychiatry, Wenzhou Seventh People’s Hospital, Wenzhou, 
China. 2 Department of Ultrasound, The First Affiliated Hospital of Wenzhou 
Medical University, Wenzhou, China. 3  Research and Development, Hangzhou 
Shansier Medical Technologies Co., Ltd., Hangzhou, China. 4 Department of Data 
Science, Hangzhou Shansier Medical Technologies Co., Ltd., Hangzhou, China. 

Received: 6 December 2022   Accepted: 12 March 2023

References
 1. Petersen RC, Roberts RO, Knopman DS, Boeve BF, Geda YE, Ivnik RJ, 

Smith GE, Jack CR Jr. Mild cognitive impairment: ten years later. Arch 
Neurol. 2009;66(12):1447–55.

 2. Manly JJ, Tang MX, Schupf N, Stern Y, Vonsattel JP, Mayeux R. Frequency 
and course of mild cognitive impairment in a multiethnic community. 
Ann Neurol. 2008;63(4):494–506.

 3. DeCarli C. Mild cognitive impairment: prevalence, prognosis, aetiology, 
and treatment. Lancet Neurol. 2003;2(1):15–21.

 4. Nettiksimmons J, DeCarli C, Landau S, Beckett L. Biological heterogene-
ity in ADNI amnestic mild cognitive impairment. Alzheimers Dement. 
2014;10(5):511-521.e511.

 5. Bowen JB, Teri L, Kukull WA, McCormick WC, McCurry SM, Larson EB. 
Progression to dementia in patients with isolated memory loss. The 
Lancet. 1997;349:763–5.

 6. Petersen RC, Smith GE, Waring SC, Ivnik RJ, Tangalos EG, Kokmen E. Mild 
cognitive impairment: clinical characterization and outcome. Arch Neu-
rol. 1999;56(3):303–8.

 7. Petersen RC, Stevens JC, Ganguli M, Tangalos EG, Cummings J, DeKosky 
ST. Practice parameter: early detection of dementia: mild cognitive 
impairment (an evidence-based review). Neurology. 2001;56:1133–42.

 8. Pandya S, Clem MA, Silva LM, Woon FLM. Does mild cognitive impairment 
always lead to dementia? a review. J Neurol Sci. 2016;369:57–62.

 9. Roberts RO, Knopman DS, Mielke MM, Cha R, Pankratz VS, Christianson 
TJH, Geda YE, Boeve BF, Ivnik RJ, Tangalos EG, et al. Higher risk of progres-
sion to dementia in mild cognitive impairment cases who revert to 
normal. Neurology. 2014;82:317–25.

 10. Mehta D, Jackson RL, Paul G, Shi J, Sabbagh MS. Why do trials for Alzhei-
mer’s disease drugs keep failing? a discontinued drug perspective for 
2010–2015. Expert Opin Investig Drugs. 2017;26:735–9.

 11. Jutten RJ, Sikkes SAM, van der Flier WM, Scheltens P, Visser PJ, Tijms BM. 
Finding treatment effects in Alzheimer trials in the face of disease pro-
gression heterogeneity. Neurology. 2021;96:e2673–84.

 12. Edmonds EC, Ard MC, Edland SD, Galasko DR, Salmon DP, Bondi MW. 
Unmasking the benefits of donepezil via psychometrically precise iden-
tification of mild cognitive impairment: a secondary analysis of the ADCS 
vitamin E and donepezil in MCI study. Alzheimers Dement. 2018;4:11–8.

 13. Kwak K, Giovanello KS, Bozoki AC, Styner M, Dayan E. Subtyping of mild 
cognitive impairment using a deep learning model based on brain 
atrophy patterns. Cell Rep Med. 2021;2(12):100467.

 14. Gamberger D, Lavrač N, Srivatsa S, Tanzi RE, Doraiswamy PM. Identifica-
tion of clusters of rapid and slow decliners among subjects at risk for 
Alzheimer’s disease. Sci Rep. 2017;7(1):6763.

 15. Nezhadmoghadam F, Martinez-Torteya A, Treviño V, Martínez E, Santos A, 
Tamez-Peña J. Alzheimer’s Disease Neuroimaging I: robust discovery of 
mild cognitive impairment subtypes and their risk of Alzheimer’s disease 
conversion using unsupervised machine learning and gaussian mixture 
modeling. Curr Alzheimer Res. 2021;18(7):595–606.

 16. Katabathula S, Davis PB, Xu R. Comorbidity-driven multi-modal subtype 
analysis in mild cognitive impairment of Alzheimer’s disease. Alzheimers 
Dement 2022.

 17. Hamilton CA, Matthews FE, Donaghy PC, Taylor JP, O’Brien JT, Barnett 
N, Olsen K, McKeith IG, Thomas AJ. Prospective predictors of decline v. 
stability in mild cognitive impairment with Lewy bodies or Alzheimer’s 
disease. Psychol Med  2021;51(15):2590–8.

 18. Blanken AE, Jang JY, Ho JK, Edmonds EC, Han SD, Bangen KJ, Nation DA. 
Distilling heterogeneity of mild cognitive impairment in the National Alz-
heimer coordinating center database using latent profile analysis. JAMA 
Network Open. 2020;3(3):200413.

 19. Hanfelt JJ, Peng L, Goldstein FC, Lah JJ. Latent classes of mild cognitive 
impairment are associated with clinical outcomes and neuropathol-
ogy: analysis of data from the National Alzheimer’s coordinating center. 
Neurobiol Dis. 2018;117:62–71.

 20. Delano-Wood L, Bondi MW, Sacco JM, Abeles N, Jak AJ, Libon DJ, Bozoki 
AC. Heterogeneity in mild cognitive impairment: differences in neuropsy-
chological profile and associated white matter lesion pathology. J Int 
Neuropsychol Soc. 2009;15:906–14.

 21. Köhler S, Hamel R, Sistermans N, Koene T, Pijnenburg YA, van der Flier 
WM, Scheltens P, Visser PJ, Aalten P, Verhey FR, et al. Progression to 
dementia in memory clinic patients without dementia: a latent profile 
analysis. Neurology. 2013;81(15):1342–9.

 22. Libon DJ, Xie SX, Eppig JS, Wicas G, Lamar M, Lippa CF, Bettcher BM, Price 
CC, Giovannetti T, Swenson R, et al. The heterogeneity of mild cogni-
tive impairment: a neuropsychological analysis. J Int Neuropsychol Soc. 
2009;16:84–93.

 23. Edmonds EC, Delano-Wood L, Jak AJ, Galasko DR, Salmon DP, Bondi 
MW. “Missed” mild cognitive impairment: high false-negative error 
rate based on conventional diagnostic criteria. J Alzheimers Dis. 
2016;52(2):685–91.

 24. Bondi MW, Edmonds EC, Jak AJ, Clark LR, Delano-Wood L, McDonald CR, 
Nation DA, Libon DJ, Au R, Galasko D, et al. Neuropsychological criteria 
for mild cognitive impairment improves diagnostic precision, biomarker 
associations, and progression rates. J Alzheimers Dis. 2014;42(1):275–89.

 25. Eppig JS, Edmonds EC, Campbell L, Sanderson-Cimino M, Delano-Wood 
L, Bondi MW. Statistically derived subtypes and associations with cerebro-
spinal fluid and genetic biomarkers in mild cognitive impairment: a latent 
profile analysis. J Int Neuropsychol Soc. 2017;23(7):564–76.

 26. Thomas KR, Bangen KJ, Weigand AJ, Ortiz G, Walker KS, Salmon DP, Bondi 
MW, Edmonds EC. Cognitive heterogeneity and risk of progression in 
data-driven subtle cognitive decline phenotypes. J Alzheimers Dis. 
2022;90:323–31.

 27. Giraldo DL, Sijbers J, Romero E. Quantification of cognitive impairment to 
characterize heterogeneity of patients at risk of developing Alzheimer’s 
disease dementia. Alzheimers Dement (Amst). 2021;13(1): e12237.

 28. Edmonds EC, Smirnov DS, Thomas KR, Graves LV, Bangen KJ, Delano-
Wood L, Galasko DR, Salmon DP, Bondi MW. Data-driven vs consensus 
diagnosis of MCI: enhanced sensitivity for detection of clinical, biomarker, 
and neuropathologic outcomes. Neurology. 2021;97(13):e1288–99.



Page 15 of 16Wang et al. Alzheimer’s Research & Therapy           (2023) 15:57  

 29. Clark L, Delano-Wood L, Libon DJ, McDonald CR, Nation DA, Bangen KJ, 
Jak AJ, Au R, Salmon DP, Bondi MW. Are empirically-derived subtypes of 
mild cognitive impairment consistent with conventional subtypes? J Int 
Neuropsychol Soc. 2013;19:635–45.

 30. Machulda MM, Lundt ES, Albertson SM, Kremers WK, Mielke MM, 
Knopman DS, Bondi MW, Petersen RC. Neuropsychological subtypes of 
incident mild cognitive impairment in the mayo clinic study of aging. 
Alzheimers Dement. 2019;15(7):878–87.

 31. Xie H, Mayo NE, Koski L. Identifying and characterizing trajectories of cog-
nitive change in older persons with mild cognitive impairment. Dement 
Geriatr Cogn Disord. 2011;31:165–72.

 32. Lee JS, Cho S-K, Kim HJ, Kim YJ, Park K-C, Lockhart SN, Na DL, Kim C, Seo 
SW. Prediction models of cognitive trajectories in patients with nonam-
nestic mild cognitive impairment. Sci Rep. 2018;8(1):10468.

 33. Kim YJ, Cho SK, Kim HJ, Lee JS, Lee J, Jang YK, Vogel JW, Na DL, Kim C, 
Seo SW. Data-driven prognostic features of cognitive trajectories in 
patients with amnestic mild cognitive impairments. Alzheimers Res Ther. 
2019;11(1):10.

 34. Kim BS, Jun S, Kim H: Cognitive trajectories and associated biomarkers in 
patients with mild cognitive impairment. J Alzheimers Dis 2023.

 35. Raghavan N, Samtani MN, Farnum M, Yang E, Novak G, Grundman M, 
Narayan VA, Dibernardo AB. The ADAS-Cog revisited: novel composite 
scales based on ADAS-Cog to improve efficiency in MCI and early AD 
trials. Alzheimers Dement. 2013;9:S21–31.

 36. Kim SJ. Woo S-y, Kim YJ, Jang H, Kim HJ, Na DL, Kim S, Seo SW, Initiative 
tAsDN: development of prediction models for distinguishable cognitive 
trajectories in patients with amyloid positive mild cognitive impairment. 
Neurobiol Aging. 2022;114:84–93.

 37. Folstein MF, Folstein SE, McHugh PR. “Mini-mental state”. a practical 
method for grading the cognitive state of patients for the clinician. J 
Psychiatr Res. 1975;12(3):189–98.

 38. Morris JC. The Clinical Dementia Rating (CDR): current version and scor-
ing rules. Neurology. 1993;43(11):2412–4.

 39. Rosen WG, Mohs RC, Davis KL. A new rating scale for Alzheimer’s disease. 
Am J Psychiatry. 1984;141(11):1356–64.

 40. Schmidt M: Rey Auditory Verbal Learning Test A Handbook. 1996.
 41. Crane PK, Carle AC, Gibbons LE, Insel PS, Mackin RS, Gross AL, Jones RN, 

Mukherjee S, Curtis SM, Harvey DJ, et al. Development and assessment of 
a composite score for memory in the Alzheimer’s Disease Neuroimaging 
Initiative (ADNI). Brain Imaging Behav. 2012;6:502–16.

 42. Gibbons LE, Carle AC, Mackin RS, Harvey DJ, Mukherjee S, Insel PS, Curtis 
SM, Mungas D, Crane PK. Initiative FtAsDN: A composite score for execu-
tive functioning, validated in Alzheimer’s Disease Neuroimaging Initiative 
(ADNI) participants with baseline mild cognitive impairment. Brain Imag-
ing Behav. 2012;6:517–27.

 43. Jack CR, Jr., Bernstein MA, Fox NC, Thompson P, Alexander G, Harvey D, 
Borowski B, Britson PJ, J LW, Ward C et al: The Alzheimer’s Disease Neu-
roimaging Initiative (ADNI): MRI methods. J Magn Reson Imaging 2008, 
27(4):685-691.

 44. Jack CR Jr, Knopman DS, Jagust WJ, Shaw LM, Aisen PS, Weiner MW, 
Petersen RC, Trojanowski JQ. Hypothetical model of dynamic bio-
markers of the Alzheimer’s pathological cascade. Lancet Neurol. 
2010;9(1):119–28.

 45. Nestor SM, Rupsingh R, Borrie M, Smith M, Accomazzi V, Wells JL, Fogarty 
J, Bartha R. Ventricular enlargement as a possible measure of Alzheimer’s 
disease progression validated using the Alzheimer’s disease neuroimag-
ing initiative database. Brain. 2008;131(Pt 9):2443–54.

 46. Landau SM, Harvey D, Madison CM, Koeppe RA, Reiman EM, Foster NL, 
Weiner MW, Jagust WJ. Associations between cognitive, functional, 
and FDG-PET measures of decline in AD and MCI. Neurobiol Aging. 
2011;32(7):1207–18.

 47. Jagust WJ, Bandy D, Chen K, Foster NL, Landau SM, Mathis CA, Price JC, 
Reiman EM, Skovronsky D, Koeppe RA. The Alzheimer’s Disease Neuroim-
aging Initiative positron emission tomography core. Alzheimers Dement. 
2010;6(3):221–9.

 48. Shaw LM, Vanderstichele H, Knapik-Czajka M, Clark CM, Aisen PS, Petersen 
RC, Blennow K, Soares H, Simon A, Lewczuk P, et al. Cerebrospinal fluid 
biomarker signature in Alzheimer’s disease neuroimaging initiative 
subjects. Ann Neurol. 2009;65(4):403–13.

 49. Kueper JK, Speechley M, Montero-Odasso M. The Alzheimer’s Disease 
Assessment Scale-Cognitive Subscale (ADAS-Cog): modifications and 

responsiveness in pre-dementia populations. a narrative review. J Alzhei-
mers Dis. 2018;63(2):423–44.

 50. Genolini C, Alacoque X, Sentenac M, Arnaud C. kml and kml3d: R pack-
ages to cluster longitudinal data. J Stat Softw. 2015;065:1–34.

 51. Schwarz G. Estimating the dimension of a model. Ann Stat. 1978;6:461–4.
 52. Team RC: R: a language and environment for statistical computing. MSOR 

connections 2014, 1.
 53. Benjamini Y, Hochberg Y. Controlling the false discovery rate: a practical 

and powerful approach to multiple testing. J R Stat Soc B: Stat Methodol. 
1995;57:289–300.

 54. Voevodskaya O, Simmons A, Nordenskjöld R, Kullberg J, Ahlström H, Lind 
L, Wahlund LO, Larsson EM, Westman E. The effects of intracranial volume 
adjustment approaches on multiple regional MRI volumes in healthy 
aging and Alzheimer’s disease. Front Aging Neurosci. 2014;6:264.

 55. Edmonds EC, Delano-Wood L, Clark L, Jak AJ, Nation DA, McDonald CR, 
Libon DJ, Au R, Galasko D, Salmon DP, et al. Susceptibility of the conven-
tional criteria for mild cognitive impairment to false-positive diagnostic 
errors. Alzheimers Dement. 2015;11:415–24.

 56. Hansson O, Zetterberg H, Buchhave P, Londos E, Blennow K, Minthon L. 
Association between CSF biomarkers and incipient Alzheimer’s disease 
in patients with mild cognitive impairment: a follow-up study. The Lancet 
Neurology. 2006;5:228–34.

 57. Mattsson N, Zetterberg H, Hansson O, Andreasen N, Parnetti L, Jonsson 
MAG, Herukka SK, van der Flier WM, Blankenstein MA, Ewers M, et al. CSF 
biomarkers and incipient Alzheimer disease in patients with mild cogni-
tive impairment. JAMA. 2009;302(4):385–93.

 58. Jack CR, Bennett DA, Blennow K, Carrillo MC, Dunn B, Haeberlein SLB, 
Holtzman DM, Jagust WJ, Jessen F, Karlawish J, et al. NIA-AA Research 
Framework: toward a biological definition of Alzheimer’s disease. Alzhei-
mers Dement. 2018;14:535–62.

 59. Pascoal TA, Therriault J, Mathotaarachchi S, Kang MS, Shin M, Benedet 
AL, Chamoun M, Tissot C, Lussier FZ, Mohaddes S, et al. Topographical 
distribution of Aβ predicts progression to dementia in Aβ positive mild 
cognitive impairment. Alzheimers Dement (Amst). 2020;12(1):12037.

 60. Jansen WJ, Ossenkoppele R, Knol DL, Tijms BM, Scheltens P, Verhey FRJ, 
Visser PJ, Aalten P, Aarsland D, Alcolea D, et al. Prevalence of cerebral 
amyloid pathology in persons without dementia: a meta-analysis. JAMA. 
2015;313(19):1924–38.

 61. Iaccarino L, Sala A, Perani D. Predicting long-term clinical stabil-
ity in amyloid-positive subjects by FDG-PET. Ann Clin Transl Neurol. 
2019;6:1113–20.

 62. Jack CR, Knopman DS, Jagust WJ, Petersen RC, Weiner MW, Aisen PS, 
Shaw LM, Vemuri P, Wiste HJ, Weigand SD, et al. Tracking pathophysiologi-
cal processes in Alzheimer’s disease: an updated hypothetical model of 
dynamic biomarkers. The Lancet Neurology. 2013;12:207–16.

 63. Jack CR, Lowe VJ, Senjem ML, Weigand SD, Kemp BJ, Shiung MM, Knop-
man DS, Boeve BF, Klunk WE, Mathis CA, et al. 11C PiB and structural MRI 
provide complementary information in imaging of Alzheimer’s disease 
and amnestic mild cognitive impairment. Brain. 2008;131(Pt 3):665–80.

 64. Jack CR, Lowe VJ, Weigand SD, Wiste HJ, Senjem ML, Knopman DS, Shiung 
MM, Gunter JL, Boeve BF, Kemp BJ, et al. Serial PIB and MRI in normal, mild 
cognitive impairment and Alzheimer’s disease: implications for sequence 
of pathological events in Alzheimer’s disease. Brain. 2009;132:1355–65.

 65. Hyman BT. Amyloid-dependent and amyloid-independent stages of 
Alzheimer disease. Arch Neurol. 2011;68(8):1062–4.

 66. Fox NC, Scahill RI, Crum WR, Rossor MN. Correlation between 
rates of brain atrophy and cognitive decline in AD. Neurology. 
1999;52:1687–1687.

 67. Jack CR, Petersen RC, Xu YC, O’Brien PC, Smith GE, Ivnik RJ, Boeve BF, Tan-
galos EG, Kokmen E. Rates of hippocampal atrophy correlate with change 
in clinical status in aging and AD. Neurology. 2000;55:484–90.

 68. Engler H, Forsberg A, Almkvist O, Blomquist G, Larsson E, Savitcheva I, Wall 
A, Ringheim A, Långström B, Nordberg A. Two-year follow-up of amyloid 
deposition in patients with Alzheimer’s disease. Brain. 2006;129(Pt 
11):2856–66.

 69. Vemuri P, Wiste HJ, Weigand SD, Shaw LM, Trojanowski JQ, Weiner MW, 
Knopman DS, Petersen RC, Jack CR Jr. MRI and CSF biomarkers in normal, 
MCI, and AD subjects: diagnostic discrimination and cognitive correla-
tions. Neurology. 2009;73(4):287–93.

 70. Jack CR, Shiung MM, Gunter JL, O’brien PC, Weigand SD, Knopman DS, 
Boeve BF, Ivnik RJ, Smith GE, Cha R, et al. Comparison of different MRI 



Page 16 of 16Wang et al. Alzheimer’s Research & Therapy           (2023) 15:57 

•
 
fast, convenient online submission

 •
  

thorough peer review by experienced researchers in your field

• 
 
rapid publication on acceptance

• 
 
support for research data, including large and complex data types

•
  

gold Open Access which fosters wider collaboration and increased citations 

 
maximum visibility for your research: over 100M website views per year •

  At BMC, research is always in progress.

Learn more biomedcentral.com/submissions

Ready to submit your researchReady to submit your research  ?  Choose BMC and benefit from: ?  Choose BMC and benefit from: 

brain atrophy rate measures with clinical disease progression in AD. 
Neurology  2004;62:591–600.

 71. Stern Y. Cognitive reserve and Alzheimer disease. Alzheimer Dis Assoc 
Disord. 2006;20(3 Suppl 2):S69-74.

 72. Nelson PT, Abner EL, Schmitt FA, Kryscio RJ, Jicha GA, Smith CD, Davis 
DG, Poduska JW, Patel E, Mendiondo MS, et al. Modeling the association 
between 43 different clinical and pathological variables and the severity 
of cognitive impairment in a large autopsy cohort of elderly persons. 
Brain Pathol. 2010;20(1):66–79.

 73. Luo JR, Agboola F, Grant EA, Morris JC, Masters CL, Albert MS, Johnson 
SC, McDade E, Fagan AM, Benzinger TL-S, et al. Accelerated longitudinal 
changes and ordering of Alzheimer disease biomarkers across the adult 
lifespan. Brain. 2022;145(12):4459–73.

Publisher’s Note
Springer Nature remains neutral with regard to jurisdictional claims in pub-
lished maps and institutional affiliations.


	Uncovering heterogeneous cognitive trajectories in mild cognitive impairment: a data-driven approach
	Abstract 
	Background 
	Methods 
	Results 
	Conclusions 

	Background
	Methods
	ADNI database
	Participants
	Neuropsychological tests
	Structural magnetic resonance imaging (MRI) measures
	PET imaging measures
	GeneticCSF-based biomarkers
	Clustering of longitudinal trajectories of cognitive performance
	Statistical analyses

	Results
	Findings of longitudinal k-means cluster analysis
	Baseline cluster characteristics
	Cluster membership and longitudinal changes
	Progression to dementia
	Sensitivity analyses

	Discussion
	Anchor 24
	Acknowledgements
	References


